如今,激光雷达技术(“光探测和测距”)在遥感界蓬勃发展。我们可以看到如今应用已经较为广泛,例如空中激光扫描(ALS),可用于大规模建筑测量、道路和森林;地面激光扫描(TLS),可用于室外和室内环境中更详细但速度较慢的城市测量;移动激光扫描(MLS)精度比TLS低,但由于传感器安装在在同一辆车上而具有更高的效率。
由于这些技术的发展,近年来可用的三维地理数据和处理技术数量激增。针对三维城市点云的分析,已有许多半自动和自动的方法。这是一个有着良好发展前景的研究领域。然而,对于最佳的检测、分割和分类方法还没有达成共识。所以我们搜集了一些Lidar数据集,供大家使用,希望不断提出新的检测、分割和分类的方法。
目录
1. WHU-TLS点云数据集
2. Oakland3-D点云数据集
3. Paris-rue-Madame数据集
4. IQmulus& TerraMobilita数据集
5. Districtof Columbia数据集
6. semantic3d数据集
7. Paris-Lille-3D数据集
8. DublinCity数据集
1
WHU-TLS点云数据集
武大空间智能研究所课题组结合课题组近十年来的数据积累,联合慕尼黑工业大学、芬兰大地所、挪威科技大学、代尔夫特理工大学发布全球最大规模和最多样化场景类型的TLS点云配准基准数据集。本次公开的WHU-TLS基准数据集涵盖了地铁站、高铁站、山地、森林、公园、校园、住宅、河岸、文化遗产建筑、地下矿道、隧道等11种不同的环境数据汇总数据汇总,共包含115个测站、17.4亿个三维点以及点云之间的真实转换矩阵。此外,该基准数据集也为铁路安全运营、河流勘测和治理、森林结构评估、文化遗产保护、滑坡监测和地下资产管理等应用提供了典型有效数据。
WHU-TLS点云数据集示例
下载地址:
参考文献:Dong Z., Liang F., Yang B., Xu Y.,Zang Y., Li J., Wang Y., Dai W., Fan H., Liang X., Stilla U., 2020.Registration of large-scale TLS Point Clouds: A Review and Benchmark. ISPRS J.Photogramm. Remote Sens. (In press)
2
Oakland 3-D点云数据集
Oakland 3-D数据是使用Navlab11和侧视的LMS激光扫描仪收集的。数据采集点位于宾夕法尼亚州匹兹堡奥克兰市的芝加哥大学校园。数据以ascii格式提供:x, y, z标签置信度,每行一点,空格作为分隔符。还提供了相应的vrml文件(.wrl)和标签计数文件(.stats)。数据集由两个子集(part2,part3)组成,每个子集有自己的本地参考帧,其中每个文件包含100000个三维点。对训练集/验证集和测试集进行了筛选,并将其从44个标签重新映射到5个标签中。
下载地址:~vmr/datasets/oakland_3d/cvpr09/doc/
参考文献:Daniel Munoz, J. Andrew (Drew) Bagnell, Nicolas Vandapel and Martial Hebert Conference Paper, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), June, 2009
3
Paris-rue-Madame数据集
Paris-rue-Madame数据集包是由三维移动激光扫描仪收集得到。数据收集于法国巴黎第六区的一个街道rue Madame,试验区包含从rue Mézières至rue Vaugirard的160米长的街道;数据获取时间为2013年2于8日13:30。
这个数据集是在TerraMobilita项目的框架下开发的。它是由位于法国普里斯帕里斯蒂奇矿山的机器人实验室(CAOR)的LARA2-3D三维激光扫描仪获得的。数据标注是由法国枫丹白露矿业中心(MINES ParisTech)的数学形态学中心(CMM)以人工辅助的方式进行的。
数据集包含两个ply文件,每个ply文件包含有1000万个点。每个文件包含一个点列表(x, y, z, reflective, label, class),其中x, y, z对应于Lambert 93和altitude IGN1969(grid RAF09)参考坐标系中的地理参考坐标(E, N, U),reflective是激光强度,label是分割后获得的对象标签,class是对象类别。
GT_Madame1_2.ply文件点云的快照,由Z坐标值、反射率、对象标签和对象类着色。
下载地址:~serna/rueMadameDataset.html
参考文献:A. Serna, B. Marcotegui, F. Goulette and J.-E. Deschaud “Paris-rue-Madame database: a 3D mobile laser scanner dataset for benchmarking urban detection, segmentation and classification methods”. ICPRAM 2014.
4
IQmulus & TerraMobilita数据集
IQmulus & TerraMobilita数据集是一个比赛数据集,数据包含由3亿个三维点组成的点云数据,数据于2013年1月在法国的一个城市密集区域获取。
这个数据集是在iQmulus和TerraMobilita项目的框架下产生。它由法国国家测绘(IGN)开发的MLS系统Stereopolis II获取。数据标注由IGN的MATIS实验室以手动方式进行。
在这个数据集中,数据存储为ply文件格式,整个三维点云被分割和分类,即每个点包含一个标签和一个类。因此,检测分割分类方法的逐点评价成为可能。
所有坐标对应于Lambert 93和altitude IGN1969(grid RAF09)参考系统中的地理参考坐标(E, N, U),反射率为激光强度。已从XY坐标中减去偏移量,目的是提高数据精度。每个文件包含以下属性:
1、(float32) X, Y, Z:Lambert 93系统中的笛卡尔地理参考坐标。
2、(float32) X, Y, Z:原始坐标
3、(float32) reflectance:后向散射强度校正距离。
4、(uint8) num_echo:回声的数量(处理多个回声)
每个参与者提供的每个经过处理的文件一定是包含原始点的PLY文件(顺序相同),它们的原始属性和两个附加属性如下:
5、(uint32) id: 包含每个分段对象的唯一标识符/标签。
6、(uint32) class: 包含使用语义类树中的标签对每个分段对象的分类结果。具有相同id的两点必须具有相同的类。
由于数据集的每个点都包含一个id和一个类,因此将以逐点的方式执行计算。
下载地址:
参考文献:Bruno Vallet, Mathieu Brédif, Andrés Serna, Beatriz Marcotegui, Nicolas Paparoditis. TerraMobilita/IQmulus urban point cloud analysis benchmark. Computers and Graphics, Elsevier, 2015, Computers and Graphics, 49, pp.126-133.
5
District of Columbia数据集
华盛顿的LiDAR点云数据可供任何人在Amazon S3上使用。该数据集由首席技术官办公室(OCTO)通过哥伦比亚特区地理信息系统计划管理,包含整个特区的平铺点云数据以及相关元数据。点云中的每个点都已根据以下模式进行了分类。
Class 1: Processed, but unclassified
Class 2: Bare earth
Class 7: Low noise
Class 9: Water
Class 10: Ignored ground
Class 11: Withheld
Class 17: Bridge decks
Class 18: High noise
下载地址:
6
semantic3d数据集
semantic3d提供了一个带有大标签的自然场景的3D点云数据集,总计超过40亿点。它还涵盖了多种多样的城市场景:churches, streets, railroad tracks, squares, villages, soccer fields, castles等等。semantic3d提供的点云已使用最先进的设备进行静态扫描,并且包含非常精细的细节。
semantic3d数据集维三维场景中的语义分割评估创造了一个框架,在这个框架中,提供:
1、大量点云,其中包含超过40亿个标记点。
2、真实标签,由专业评估人员手工标记。
3、 一个通用的评估工具,可提供已建立的交叉联合度量方法以及完整的混淆矩阵。
下载地址:
参考文献:Hackel T, Savinov N, Ladicky L, et al. Semantic3d. net: A new large-scale point cloud classification benchmark[J]. arXiv preprint arXiv:1704.03847, 2017.
7
Paris-Lille-3D数据集
Paris-Lille-3D是点云分类的基准。数据是由法国两个不同城市(巴黎和里尔)的移动激光系统(MLS)产生的。点云已完全被手工标记为50种不同的类别,以帮助研究社区进行自动点云分割和分类算法。数据的每个文件均以单独的ply文件存储数据的汇总见表6,每个ply点云文件均包含10个属性:
1、x, y, z (float) : 点的位置;
2、 x_origin, y_origin, z_origin (float) : LiDAR位置;
3、GPS_time (double) : 点云获取时间;
4、reflectance (uint8) : 反射率;
5、label (uint32) : 点云所属标签;
6、class (uint32) : 点云所属类别。
下载地址:
参考文献:Roynard X, Deschaud J E, Goulette F. Paris-Lille-3D: A Point Cloud Dataset for Urban Scene Segmentation and Classification[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops. 2018: 2027-2030.
8
DublinCity数据集
DublinCity数据集是都柏林大学学院(UCD)的城市建模小组通过ALS设备扫描都柏林市中心的主要区域(大约5.6平方公里)。在总共的14亿个点云中包含大约2.6亿个标记点标记(图1)。标记区域位于点云的最密集采样部分内,并且被航空影像完全覆盖。
数据集被被标注为3个级别共13个类(图7a):
Level 1:此级别包含粗略的标签,包括四个类别:(a)Building;(b)Ground;(c)Vegetation;(d)Undefined。建筑物都是可居住的城市结构的形状(例如房屋,办公室,学校和图书馆)。地面主要包含位于地形高程的点。植被类别包括所有类型的植物。最后,未定义的点是那些不太受欢迎的点,可以包含在城市元素中(例如垃圾桶,装饰雕塑,汽车,长凳,电线杆,邮政信箱和非静态物体)。大约10%的被标记为未定义,它们主要是河流,铁路和建筑工地的点。
Level 2:在此级别中,级别1的前三个类别进一步精细分类。建筑物被标记为屋顶和外墙;植被被分为不同的植物(例如树木和灌木丛);地面点分为街道,人行道和草地。
Level 3:包括屋顶(例如屋顶窗和天窗)和外墙上的任何类型的门窗。
图7d. 数据标注示例
下载地址:
参考文献:S M Iman Zolanvari, Susana Ruano, Aakanksha Rana, Alan Cummins, Rogerio Eduardo da Silva, Morteza Rahbar, Aljosa Smolic. 2019 DublinCity: Annotated LiDAR Point Cloud and its Applications. 30th BMVC, September 2019.
结语:以上数据集均总结与论文和比赛数据集,若有所遗漏或存在错误,深表歉意;也希望大家能与我们联系,提出宝贵的意见和建议,我们会尽快补全及改正,非常感谢您的支持。
文编:IMARS
美编:叶国兴审核:石茜
文章转载于:IMARS 遥感大数据智能挖掘与分析
感谢IMARS辛苦整理,本文仅限行业学习交流之用,版权、著作权归原载平台及作者所有。我们尊重作者的成果,如涉嫌侵权,请联系我们及时删除。
– END –
戳原文,更有料!
———END———
限 时 特 惠: 本站每日持续更新海量各大内部创业教程,一年会员只需98元,全站资源免费下载 点击网站首页每天更新
站 长 微 信: aiwo51889